Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules.

نویسندگان

  • Ikuko Miyazaki
  • Masato Asanuma
  • Francisco J Diaz-Corrales
  • Masaya Fukuda
  • Kiyoyuki Kitaichi
  • Ko Miyoshi
  • Norio Ogawa
چکیده

Recently, the neurotoxicity of dopamine (DA) quinone formation by auto-oxidation of DA has focused on dopaminergic neuron-specific oxidative stress. In the present study, we examined DA quinone formation in methamphetamine (METH)-induced dopaminergic neuronal cell death using METH-treated dopaminergic cultured CATH.a cells and METH-injected mouse brain. In CATH.a cells, METH treatment dose-dependently increased the levels of quinoprotein (protein-bound quinone) and the expression of quinone reductase in parallel with neurotoxicity. A similar increase in quinoprotein levels was seen in the striatum of METH (4 mg/kg X4, i.p., 2 h interval)-injected BALB/c mice, coinciding with reduction of DA transporters. Furthermore, pretreatment of CATH.a cells with quinone reductase inducer, butylated hydroxyanisole, significantly and dose-dependently blocked METH-induced elevation of quinoprotein, and ameliorated METH-induced cell death. We also showed the protective effect of tyrosinase, which rapidly oxidizes DA and DA quinone to form stable melanin, against METH-induced dopaminergic neurotoxicity in vitro and in vivo using tyrosinase null mice. Our results indicate that DA quinone formation plays an important role, as a dopaminergic neuron-specific neurotoxic factor, in METH-induced neurotoxicity, which is regulated by quinone formation-related molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson's disease and neurotoxin-induced parkinsonism.

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuron-specific degeneration in the substantia nigra. A number of gene mutations and deletions have been reported to play a role in the pathogenesis of familial PD. Moreover, a number of pathological and pharmacological studies on sporadic PD and dopaminergic neurotoxin-induced parkinsonism have hy...

متن کامل

Dopaminergic neuron-specific oxidative stress caused by dopamine itself.

Oxidative stress, including the reactive oxygen or nitrogen species generated in the enzymatical oxidationor auto-oxidation of an excess amount of dopamine, is thought to play an important role in dopaminergic neurotoxicity. Dopamine and its metabolites containing 2 hydroxyl residues exert cytotoxicityin dopaminergic neuronal cells, primarily due to the generation of highly reactive dopamine an...

متن کامل

Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.

Methamphetamine (METH) is a powerful psychostimulant that is increasingly abused worldwide. Although it is commonly accepted that the dopaminergic system and oxidation of dopamine (DA) play pivotal roles in the neurotoxicity produced by this phenylethylamine, the primary source of DA responsible for this effect has remained elusive. In this study, we used mice heterozygous for vesicular monoami...

متن کامل

Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.

Methamphetamine-induced toxicity has been shown to require striatal dopamine and to involve mechanisms associated with oxidative stress. Dopamine is a reactive molecule that can oxidize to form free radicals and reactive quinones. Although this has been suggested to contribute to the mechanism of toxicity, the oxidation of dopamine has never been directly measured after methamphetamine exposure...

متن کامل

Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2006